

Ce document a été mis en ligne par l'organisme FormaV®

Toute reproduction, représentation ou diffusion, même partielle, sans autorisation préalable, est strictement interdite.

Pour en savoir plus sur nos formations disponibles, veuillez visiter : <u>www.formav.co/explorer</u>

CORRIGE

Ces éléments de correction n'ont qu'une valeur indicative. Ils ne peuvent en aucun cas engager la responsabilité des autorités académiques, chaque jury est souverain.

ÉLÉMENTS DE RÉPONSE PROPOSITION DE BARÈME

EXERCICE 1 (12 points)

A.1°	Toutes les solutions de (E_0) sont définies sur R par : $h(x) = C e^x$ avec C réel.	1 point
2°	Pour tout x réel $g'(x) = e^x + x e^x + 2$ d'où $g'(x) - g(x) = e^x - 2x$. Donc g est solution de (E) .	1,5 point
3°	Toutes les solutions de (E) sont définies sur R par : $f(x) = h(x) + g(x)$, $f(x) = Ce^x + xe^x + 2x + 2$ ou $f(x) = (x + C)e^x + 2x + 2$ avec C réel quelconque.	0,5 point
4°	La solution cherchée est définie sur R par : $f(x) = (x + 1) e^x + 2x + 2$.	1 point
B.1°	$\lim_{x \to +\infty} f(x) = +\infty.$	
	Mettre 0,25 point si le résultat n'est pas justifié.	0,5 point
2°	Réponse B.	1 point
3° a)	$f(x) = 3 + 4x + \frac{3}{2}x^2 + x^2 \varepsilon(x)$ avec $\lim_{x \to 0} \varepsilon(x) = 0$.	1,5 point
b)	Réponse B.	1 point
c)	Réponse A.	1 point
C.1°	$f(x) = 3 + 4x + \frac{1}{2}x + x \mathcal{E}(x)$ avec $\lim_{x \to 0} \mathcal{E}(x) = 0$. Réponse B . I = 4.	0,5 point
2°	$J = e + e^{-1}.$	1 point
3° a)	$K = 4 + e + e^{-1}$.	0,5 point
b) c	$K \approx 7,09$.	0,5 point
(c)	K est l'aire, en unités d'aire, de la partie du plan limitée par la	
dioli	courbe C, l'axe des abscisses et les droites d'équations $x = -1$ et $x = 1$.	0,5 point

GROUPEMENT B DES BTS	SESSION 2010
Mathématiques Corrigé	MATGRB1 Corrigé
Durée : 2 heures	Page: 1/2

EXERCICE 2 (8 points)

- A.1° a) • Chaque prélèvement de 30 bouteilles est constitué par 30 épreuves élémentaires indépendantes (puisque le prélèvement est associé à un tirage avec remise).
 - Chaque épreuve élémentaire (le tirage d'une bouteille) peut déboucher sur deux résultats et deux seulement : la bouteille est non conforme, événement de probabilité p = 0.02 et la bouteille est conforme, événement de probabilité q = 1 - p = 0.98.
 - Donc la variable aléatoire X qui associe à ces tirages le nombre de bouteilles non conformes suit la loi binomiale de paramètres n = 30 et p = 0.02.

1,5 point

 $P(X \le 1) = P(X = 0) + P(X = 1).$ b) $P(X \le 1) \approx 0.879$.

1 point

2° a) $\lambda = 0.6$. 0,5 point

D'après le formulaire, $P(Y \le 1) \approx 0.5488 + 0.3293$;

0,5 point

En posant $T = \frac{Z - 70}{1}$, $P(68 \le Z \le 70) = P(-2 \le T \le 2) \approx 0.95$.

1,5 point

2,57 ou 2,58 sont des valeurs approchées de h.

1,5 point

 $\int_{0.07}^{0.07} P(Y \le 1) \approx 0.5$ $\int_{0.07}^{0.07} P(Y \le 1) \approx 0.5$ $\int_{0.07}^{0.07} P(68 \le Z \le 70) = 2.57 \text{ ou } 2.58 \text{ sont des valeurs approchées}$ $I = \left[\overline{x} - 1.96 \frac{1}{\sqrt{100}} ; \overline{x} + 1.96 \frac{1}{\sqrt{100}} \right];$ $I \approx [69.92; 70.32].$ Non.

1 point

0,5 point

GROUPEMENT B DES BTS	SESSION 2010
Mathématiques Corrigé	MATGRB1 Corrigé
Durée : 2 heures	Page : 2/2